ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հшишиншић ррифшиши ншипни 55, №3, 2002 Химический журнал Армении

УДК 669.712.1.06

ПОЛУЧЕНИЕ ВЫСОКОДИСПЕРСНОГО ГИДРОКСИДА АЛЮМИНИЯ ПРИ КАРБОНИЗАЦИИ ЧАСТИЧНО ОБЕСКРЕМНЕННЫХ АЛЮМИНАТНЫХ РАСТВОРОВ

А. А. ХАНАМИРОВА, Л. П. АПРЕСЯН и А. Р. АДИМОСЯН

Институт общей и неорганической химии им. М.Г.Манвеляна НАН Республики Армения, Ереван

Поступило 15 XII 1998

Подобраны условия, обеспечивающие образование мелких кристаллов гидроксида алюминия при проведении неполной карбонизации частично обескремненных калиевых и калий-натриевых алюминатных растворов с добавками веществ, понижающих свободную поверхностную энергию системы. При этом образуется гидроксид алюминия с дисперсностью, необходимой для производства корундовой керамики.

Табл. 3, библ. ссылок 30.

Качество корундовой керамики и возможные области ее применения в значительной степени зависят от дисперсности и чистоты исходного глинозема (в основном по вредным примесям кремнезема и щелочных металлов) [1,2]. Для получения малокремнеземистого малощелочного высокодисперсного альфа-глинозема (корунда) необходимо либо удалять образовавшиеся в $Al(OH)_3$ соединения кремния и щелочных элементов путем подбора условий промывки технического гидроксида алюминия (TГА), его кальцинации и измельчения Al_2O_3 либо предотвращать образование крупных кристаллов $Al(OH)_3$ и попадание в него SiO_2 и R_2O на стадии синтеза — при обескремнивании и карбонизации щелочных алюминатных растворов (RAlO2).

В настоящее время процессы обескремнивания и карбонизации RAlO₂, способствующие получению крупнозернистого $T\Gamma A$ и крупнозернистого технического глинозема, используемого для производства первичного алюминия, хорошо изучены [2-7]. Исследований же, посвященных образованию мелкозернистого $Al(OH)_3$ при карбонизации натриевых

алюминатных растворов, немного [8-11], а при карбонизации калиевых алюминатных растворов (KAlO₂) или преимущественно калиевых алюминатных растворов (KNaAlO₂), насколько нам известно, не существует.

В промышленных условиях карбонизацию RAlO2 осуществляют при температурах 70-80°С в течение 6-8 ч газо-воздушной смесью, содержащей 12-14% СО2, с затравкой свежеосажденного гидроксида алюминия при затравочном отношении 0,8-1,0 из обескремненных алюминатных растворов, содержащих 100-110 г/л R2Oобщ. (в пересчете на Na2O), 80-90 г/л Al2O3 и 0,2-0,3 r/π SiO₂ [2-7]. Из литературных данных [2-7] следует, что снижение температуры, увеличение скорости карбонизации, понижение концентрации R2Oобщ и Al2O3, повышение концентрации SiO2 и относительного содержания Na2O (от (Na2O+K2O) в RAlO2 способствуют образованию мелкодисперсного гидроксида алюминия. Зависимость содержания примесей в гидроксиде алюминия от глубины карбонизации может быть представлена кривыми, имеющими экстремальные точки, соответствующие минимальным значениям R2O и SiO2 и располагающиеся в узком интервале выходов Al2O3 (59-61%) [2,12,13]. Установлено [2,3], что для KAlO2 и KNaAlO2, образующихся при переработке щелочными способами высококалиевого алюмосиликатного сырья, процесс обескремнивания проходит труднее, а карбонизация - легче, чем для натриевых и преимущественно натриевых алюминатных растворов.

Исходя из вышесказанного для KAlO2 и KNaAlO2, по-видимому, целесообразно проводить неполное обескремнивание [14], а карбонизацию частично обескремненных алюминатных растворов осуществлять после их разбавления, при пониженных температурах и небольших экспозициях при быстром пропускании газо-воздушной смеси в одну стадию с исключением бикарбонизации раствора.

Целью данной работы было определение оптимальных условий карбонизации частично обескремненных $KAlO_2$ и $KNaAlO_2$, промывки выделяющегося $Al(OH_3)$ и его кальцинации, обеспечивающих получение малокремнеземистого малощелочного высокодисперсного корунда.

Экспериментальная часть

Карбонизации подвергали KAlO2 и KNaAlO2 (с массовым отношением K2O:Na2O=8:2), полученные после неполного обескремнивания [14] и разбавленные раствором щелочи до концентраций 20, 30, 50 и 60 r/π Al2O3. Для формирования заданной структуры гидроксида алюминия к KAlO2 и KNaAlO2 перед карбонизацией добавляли либо неионогенное поверхностно-активное вещество (ПАВ) в виде раствора полиэтилированного изоктилфенола (ОП-7) (0,01-0,15 масс.%) либо соли AlF3 (3-9 r/π), (NH₄)₂CO₃ (5-12 r/π), Al(NO₃)₃·9H₂O (7-15 r/π) реактивных квалификаций "ч.д.а.".

Карбонизацию проводили в карбонизаторе емкостью 1 л, снабженном обратным холодильником, пробоотборником и якорной мешалкой (80 об/мин). Газо-воздушную смесь с содержанием 12-14% СО2 пропускали через RAlO2 со скоростью 30 л/ч. Карбонизацию осуществляли при температурах 20, 30, 40 и 50°С и постоянной глубине разложения раствора 60-62%. Пульпу отфильтровывали под вакуумом, гидроксид алюминия на фильтре отмывали от адсорбированных примесей маточного раствора трехкратной репульпацией горячей (60°С) дистиллированной водой при массовом отношении Т:Ж=1:1 до отрицательной реакции промывных вод на фенолфталеин. Промытый и высушенный Al(OH)3 подвергали кальцинации при температурах (Т) 1050, 1075, 1100 и 1125°С при продолжительности (τ) 1, 2, 3 и 5 ч в присутствии минерализаторов AlF3 и NH4F в силитовой печи при постоянной скорости подъема температуры 7 град/мин.

 $\label{eq:2.2} \begin{tabular}{ll} $Ta6лицa\ 1$ \\ \begin{tabular}{ll} Характеристика гидроксида алюминия, полученного карбонизацией \\ \begin{tabular}{ll} алюминатных растворов с добавкой ОП-7 \\ \end{tabular}$

Условия карбонизации			Характеристика промытого гидроксида					
			алюминия					
T, ∘C	Al ₂ O ₃	добавка	R ₂ O	SiO ₂ , %	количес	гво (%)		
	в растворе,	ОП-7,	(по К2О),		фракций	й (<i>мкм</i>)		
	г/л	масс.%	%		1-2	3-5		
Калиевые алюминатные растворы								
		0,01	0,20	0,038	85	15		
	30	0,05	0,20	0,038	92	8		
30		0,10	0,19	0,036	100	_		
	50	0,01	0,22	0,040	80	20		
	50	0,10	0,22	0,040	92	8		
	30	0,01	0,18	0,032	81	19		
		0,05	0,17	0,031	87	13		
40		0,10	0,17	0,031	92	8		
	50	0,01	0,20	0,035	76	24		
	30	0,10	0,20	0,035	90	10		
Калий-натриевые алюминатные растворы (масс. отн. $K_2O:Na_2O=8:2$)								
		0,01	0,26	0,045	88	12		
	30	0,05	0,26	0,045	98	2		
30		0,10	0,26	0,045	100	_		
	50	0,01	0,29	0,050	84	16		
	30	0,10	0,29	0,050	96	4		
		0,01	0,21	0,041	86	14		
	30	0,05	0,20	0,041	93	7		
40		0,10	0,20	0,040	98	2		
	50	0,01	0,25	0,047	80	10		
		0,10	0,25	0,047	93	7		

Условия карбонизации						Характеристика промытого			
					гидроксида алюминия				
Τ,	Al ₂ O ₃		добавка	R ₂ O	SiO ₂ ,	количество (%)			
°C	В			(по	%	фракций (<i>мкм</i>)			
	раст-	AlF3	(NH ₄) ₂ CO ₃	Al(NO ₃) ₃ (9H ₂ O	K2O),		1-2	3-5	
	воре,		, ,	, , ,	%				
	г/л								
Калиевые алюминатные растворы									
		5	_	_	0,19	0,037	86	14	
	30	7	_	_	0,19	0,037	97	3	
30	30	_	7	_	0,20	0,038	88	12	
30		_	9	-	0,19	0,036	98	2	
	50	7	_	_	0,23	0,041	93	7	
		_	9	_	0,22	0,040	96	4	
		5	_	_	0,17	0,034	82	18	
	30	7	_	_	0,16	0,034	93	7	
40	00	_	7	_	0,18	0,037	84	16	
10			9	-	0,17	0,036	95	5	
	50	7	_	_	0,21	0,039	90	10	
		_	9	_	0,20	0,037	92	8	
Калий-натриевые алюминатные растворы (масс. отн. $K_2O:Na_2O=8:2$)									
30	30	_	_	7	0,25	0,042	89	11	
		_	_	9	0,25	0,041	92	8	
		_	_	12	0,24	0,041	100	_	
		_	_	7	0,29	0,047	84	16	
	50	_	_	9	0,28	0,046	91	9	
		_	_	12	0,28	0,046	95	5	
l l	30	_	_	9	0,21	0,039	90	10	
40		_	_	12	0,20	0,039	96	4	
	50	_	_	12	0,22	0,042	92	8	

Исходные, промежуточные и конечные жидкие и твердые пробы исследовали химическими, фотометрическими и кристаллооптическими стандартными методами, практикуемыми в глиноземной промышленности. Фазовый состав гидроксидов и оксидов алюминия контролировали рентгенографическим анализом.

Проведенные исследования показали, что при снижении содержания Al2O3 в исходных растворах с 60 до 20 г/л при всех температурах размер частиц осаждаемого гидроксида алюминия уменьшается, но оптимальными можно считать концентрации 30 и 50 г/л Al2O3. При снижении температуры карбонизации с 50 до 30оС при всех концентрациях Al2O3 гидроксид алюминия измельчается. Самый мелкий гидроксид алюминия выделяется при температуре 30оС и содержании в растворах 30 г/л Al2O3. При температуре 20оС

Характеристика гидроксида алюминия			Ус	ловия кальцинации при температуре 1075°C	Характеристика глинозема					
R ₂ O	SiO ₂ , %	колич	ество	τ,	добавка, %	R ₂ O	SiO ₂ ,	Al ₂ O ₃ ,	размер	
(по		(%)		Ч		(по	%	%	час-	
K2O),		фракций				K2O),			тиц,	
%		(мкм)				%			MKM	
		1-2	3-5							
Гидроксид алюминия выделен из калиевых алюминатных растворов										
получен при карбонизации с ОП-7										
0,17 —	0,031 —	92-	8-0	3	$0.3A1F_3 + 0.3NH_4F$	0,045	0,022	100	0,7-2	
0,22	0,040	100	"-	2	0,5 AlF ₃	0,050	0,021	100	0.7 - 2	
"-	" _ " _	"-	"-	2	0,9 NH ₄ F	0,048	0,022	100	0.7 - 2	
"-	" _ "	"-	"-"							
"-"	"-"-	"-"	"-							
"-	"-"	" — " _	"_"							
"_"										
получен	— — — — получен при карбонизации с AlF3 и (NH4)2CO3									
0,16 -	0,034 —	90 —	10-	3	0,5AlF ₃	0,050	0,021	100	0.7 - 2	
0,23	0,041	98	2	3	0,9NH₄F	0,050	0,023	100	0.7 - 2	
"_	" _ " _	"-	"-		, 4	,	,		,	
"-	"-"	"—	"-							
"-"		"-"	"-"							
Гидрог	Гидроксид алюминия выделен из калий-натриевых алюминатных растворов (масс. отн.									
K ₂ O:Na ₂ O=8:2)										
получен при карбонизации с ОП-7										
0,20 —	0,041 —	93 —	7 - 0	3	$0.3AlF_3 + 0.3NH_4F$	0,055	0,030	100	0,7—	
0,29	0,050	100							1,5	
получен при карбонизации с Al(NO ₃) ₃ .9H ₂ O										
0,20 —	0,039 —	90 —	10 —	2	0,9NH ₄ F	0,058	0,030	100	0,7—	
0,28	0,046	100	0						1,5	

алюминатных растворов повышается, что приводит к уменьшению скорости их разложения и увеличению размеров частиц. Оптимальными являются температуры 30 и 40° C.

Увеличение количества добавок ОП-7 и солей алюминия и аммония к RAlO2 способствует значительному измельчению осадков. Было установлено, что содержание в Al(OH)3 фракции 1-2 $m\kappa m$ в количестве 90-100% обеспечивают добавки 0,05-0,10% ОП-7, 7,0 n/π AlF3, 9,0 n/π (NH4)2CO3, 9-12 n/π Al(NO3)3·9H2O (табл. 1, 2). Образующийся в оптимальных условиях карбонизации тонкодисперсный гидроксид алюминия благодаря своей однородности и правильной форме кристаллов хорошо фильтруется – на его отмывку от примеси щелочи потребовалось столько же воды, сколько на отмывку Al(OH)3, полученного в обычных условиях карбонизации (без добавок ПАВ и солей алюминия и аммония). Из алюминатных растворов другими способами [15,16] не удалось получить мелкодисперсный осадок, который можно было бы легко отделить от раствора фильтрованием.

Согласно данным кристаллооптического и рентгенографического анализов, выделяющийся гидроксид алюминия представлен байеритом с показателями преломления N_p =1,565 и N_g =1,581 и межплоскостными расстояниями d=4,71, 4,35 и 2,215E.

При кальцинации высокодисперсных гидроксидов алюминия, выделенных в оптимальных условиях карбонизации KAlO2 и KNaAlO2, с добавкой AlF3 и NH4F хорошо кристаллизованный малокремнеземистый малощелочной высокодисперсный α -Al2O3 образуется при температуре 1075°C (табл. 3), близкой к температуре Таммана ($T_T \approx 0.53~T_{\pi\pi.}_{Al2O3}$), при которой происходит интенсивная диффузия ионов и рекристаллизация оксида алюминия [17]. Присутствие α -Al2O3 на рентгенограммах глинозема отмечено первой сравнительно сильной (J=60) линией с межплоскостным расстоянием d=3,48E и самыми интенсивными линиями (J=85, 100, 85) с d=2,55, 2,09, 1,60E.

Обсуждение результатов

С учетом современных представлений последовательность реакций в процессе карбонизации $RAIO_2$ можно представить следующим образом [18].

В самом начале процесса углекислота нейтрализует алюминаты щелочных металлов с образованием рентгеноаморфной и псевдобемитовой фаз, которые растворяются в избытке каустической щелочи:

$$2RAIO_2 + H_2CO_3 = 2AIOOH + R_2CO_3$$

 $AIOOH + ROH = RAIO_2 + H_2O.$

По мере снижения концентрации каустической щелочи на втором этапе карбонизации происходит гидролиз алюминатов с выделением в осадок Al(OH)3:

$$RAIO_2 + 4H_2O = 2AI(OH)_3 + 2ROH$$

При дальнейшей карбонизации углекислота расходуется на нейтрализацию вновь образующейся каустической щелочи и на синтез карбонатов и бикарбонатов щелочных металлов.

Первичный осадок, выделяющийся из RAlO₂, состоит из смеси алюмокремневого геля и ассоциированных с ним дисперсного псевдобемита в скрыто-кристаллической форме и аморфного гидроксида алюминия. Такой осадок обладает развитой поверхностью и большим поверхностным натяжением. Он адсорбирует на своей поверхности из RAlO2 некоторое количество каустической, карбонатной и алюминатной щелочи, а его повышенная активность приводит при дальнейшей карбонизации к агломерации частиц кристаллизующегося Al(OH)3 и уменьшению его адсорбционной способности. Укрупнение частиц Al(OH)3 на втором этапе карбонизации сопровождается захватом им щелочного маточного раствора, внедряясь в межкристальное пространство сростков кристаллическую структуру гидроксида алюминия, повышает содержание в нем R2O; содержание же SiO2 в Al(OH)3 в этот период снижается. В конце после выделения В осадок основного кристаллического Al(OH)3 вновь выделяется тонкодисперсный Al(OH)3, содержащий примесь R2O и SiO2.

При глубине карбонизации 60-62%, принятой в данной работе, образование карбонатов и бикарбонатов щелочных металлов исключается, скорость изменения геометрической структуры первичных дисперсных гидроксидов алюминия и растворимость $Al(OH)_3$ минимальны, а растворимость SiO_2 мала [19].

Добавка к RAIO2 перед карбонизацией неионогенного ПАВ, обладающего значительной растворимостью в воде и большой поверхностной активностью, измельчению гидроксида алюминия. Адсорбируясь поверхности RAlO2 и гелеобразного первичного гидроксида алюминия, ОП-7 тем самым значительно понижает поверхностное натяжение на межфазных границах раздела и свободную поверхностную энергию дисперсных частиц формирует оболочки, образующие коагуляционные структурированные связи между частицами, в результате чего их структура разупорядочивается [20]. Диспергирующая способность ОП-7 заключается в торможении процесса совершенствования кристаллической структуры частиц гидроксида алюминия и понижении работы, требующейся для преодоления значительных по величине сил сцепления частиц в агрегаты [20,21]. В условиях массовой кристаллизации в алюминатных растворах в присутствии ОП-7 преобладает скорость образования зародышей гидроксида алюминия в сравнении со скоростью их роста и дальнейшей эволюции. Экспериментально было показано, что небольшие количества ПАВ (0,01-0,10 масс.%) могут значительно снижать большое поверхностное натяжение алюминатных растворов [15].

Добавляемые к RAlO2 соли алюминия и аммония также способствуют образованию мелкодисперсного Al(OH)3 [15,22]. При их взаимодействии со щелочью алюминатного раствора последний у поверхности кристаллов этих

солей локально нейтрализуется и из него выпадает коллоидный гидроксид алюминия с бемитовой структурой, частицы которого становятся центрами ускоряющими разложение раствора. Продукты кристаллизации, взаимодействия солей алюминия и аммония с RAlO₂ (КF, KNO₃, NaNO₃, K₂CO₃) хорошо растворимы, они не образуют защитного слоя на поверхности зерен этих солей и остаются в RAlO₂. Катионы Al^{3+} и NH_4^+ сорбируются на поверхности частиц гидроксида алюминия, уменьшая их свободную поверхностную энергию, нарушая контакт между частицами и раствором, увеличивая их агрегативную устойчивость и повышая степень пересыщения системы. При повышении степени пересыщения RAlO2 снижается энергия образования мельчайших частиц гидроксида обладающих большим количеством дефектов, на которых локализована избыточная свободная энергия [23].

Исходя из общих представлений о механизме роста кристаллов и теории кристаллизации [24,25] можно предположить, что ОП-7 и соли алюминия и аммония создают дополнительное сопротивление диффузионному переносу вещества к растущей грани кристалла Al(OH)з и уменьшают энергию образования зародышей на гранях этих кристаллов. В результате скорость роста кристаллов снижается, т. к. адсорбционно блокируя места сцепления частиц, ОП-7 и соли алюминия и аммония препятствуют их сближению.

Наблюдаемый характер зависимости дисперсности осадка от температуры и концентрации раствора связан с условиями роста частиц. В более холодных и разбавленных растворах расстояние между частицами больше, диффузия происходит медленнее и, следовательно, условия для роста частиц менее благоприятны, чем в горячих и концентрированных растворах. Поэтому при пониженных температурах и концентрациях R2O и Al2O3 в RAlO2 образование зародышей преобладает над ростом кристаллов. При снижении температуры и концентрации Al2O3 в RAlO2 растворимость кремнезема в алюминатных растворах уменьшается, в результате чего раствор становится пересыщенным по SiO2. Выделяющаяся из таких растворов в первый момент карбонизации кремнеземистая фаза как бы цементирует поверхность мельчайших частиц гидроксида алюминия, образовавшегося при гидролизе RAlO2, задерживая рост кристаллов Al(OH)3 из центра, а также откладывается между кристаллами Al(OH)3, препятствуя их сближению и росту агрегатов [26].

Зависимость дисперсности гидроксида алюминия от содержания в RAlO2 кремнезема может быть объяснена тем, что повышенные количества SiO2 в растворах повышают степень их пересыщения мелкодисперсным SiO2, что снижает энергию активации образования мельчаших частиц Al(OH)3 [23]. При введении в калиевые алюминатные растворы натриевой щелочи повышается равновесная концентрация SiO2 в RAlO2, которая в NaAlO2 устанавливается быстрее, чем в KAlO2 [14], повышается пересыщенность растворов по SiO2, что способствует образованию дисперсного гидроксида алюминия.

Меньшее содержание примесей R_2O и SiO_2 в $Al(OH)_3$, выделяемом из $KAlO_2$, по сравнению с $Al(OH)_3$, выделяемом из $KNaAlO_2$, объясняется различиями в поведении химических соединений калия и натрия [2,3].

Содержание отмываемой щелочи в виде адсорбированных осадком соединений щелочных металлов из маточного раствора в $Al(OH)_3$, осажденном из $KAlO_2$, меньше, чем в $Al(OH)_3$, выделенном из $KNaAlO_2$, благодаря лучшей растворимости в воде химических соединений калия, чем натрия [3]. Содержание неотмываемой щелочи, включенной в кристаллическую структуру $Al(OH)_3$, осажденного из $KAlO_2$, меньше, чем в $Al(OH)_3$, выделенном из $KNaAlO_2$, т. к. ион K^+ с большим радиусом (1,33E) внедряется в кристаллическую решетку $Al(OH)_3$ в меньших количествах, чем ион Na^+ с меньшим радиусом (0,98E). Из $KAlO_2$ выделяется $Al(OH)_3$ также с меньшим, чем из $KNaAlO_2$, содержанием SiO_2 и нерастворимой щелочи в виде щелочных гидроалюмосиликатов, благодаря большей растворимости в $KAlO_2$ и более замедленному выпадению в осадок гидроалюмосиликата калия по сравнению с гидроалюмосиликатами натрия [2,3].

При кальцинации Al(OH)3 все происходящие изменения его физикохимических свойств связаны с двумя процессами: дегидратацией Al(OH)3 и его структурными преобразованиями. дальнейшими высокодисперсного исходного Al(OH)3 имеется большое количество дефектов, на которых локализована избыточная свободная энергия и создаются активные центры, в результате чего начальная энергия активации процесса массопереноса и образования оксидов алюминия уменьшаются [23]. Так, с уменьшением размера частиц Al(OH)3 с 60-80 до 1-2 мкм энергия активации процесса дегидратации Al(OH)3 уменьшается с 40-50 до 9-10 кДж моль [27]. Введение в процесс термического разложения Al(OH)₃ минерализаторов – AlF₃ и NH₄F - снижает температуру, повышает скорость фазовых превращений $Al(OH)_3 \rightarrow \alpha - Al_2O_3$, способствует уменьшению содержания R₂O и SiO₂ в образующемся глиноземе. Под действием паров воды AlF3 при нагревании частично гидролизуется с образованием HF, а NH₄F при 120-160°C разлагается на NH_3 и HF. Механизм действия AlF_3 и NH_4F на процесс образования α - Al_2O_3 при кальцинации Al(OH)3 обсужден в работах [2,28]. При повышении скорости удаления из Al(OH)3 структурной воды увеличивается диффузия примесных ионов R2O из объема кристаллов Al(OH)3 на их поверхность [29]. Ионы щелочи, мигрировавшие из объема на поверхность Al(OH)3, взаимодействуют с молекулами HF, сорбированными на активных поверхностях Al(OH)3, AlOOH и у-Al₂O₃, с образованием КF и NaF. При температурах кальцинации эти соли улетучиваются [30], способствуя уменьшению содержания примеси щелочи в образующемся корунде. В присутствии AlF3 и NH4F происходит также снижение содержания SiO₂ глиноземе благодаря образованию кремнефторида алюминия и фторида кремния, испаряющихся при температурах кальцинации [2].

Итак, путем карбонизации частично обескремненных калиевых и преимущественно калиевых алюминатных растворов в подобранных условиях получен мелкодисперсный гидроксид алюминия, при кальцинации которого образуется малокремнеземистый малощелочной высокодисперсный альфаглинозем, пригодный для производства корундовой керамики без дополнительной очистки и измельчения.

ՄԱՄՆԱԿԻՈՐԵՆ ՍԻԼԻԿԱԶԵՐԾՎԱԾ ԱԼՅՈՒՄԻՆԱՏԱՅԻՆ ԼՈՒԾՈՒՅԹՆԵՐԻ ԿԱՐԲՈՆԱՑՄԱՆ ԴԵՊՔՈՒՄ ԿՈՐՈՒՆԴԱՅԻՆ ԽԵՑԵՂԵՆԻ ԱՐՏԱԴՐՈՒԹՅԱՆ ՀԱՄԱՐ ՕԳՏԱԳՈՐԾՎՈՂ ԳԵՐՄԱՆՐ ԱԼՅՈՒՄԻՆԻ ՀԻԴՐՕՔՍԻԴԻ ՍՏԱՑՈՒՄԸ

Ա. Ա. ԽԱՆԱՄԻՐՈՎԱ, Լ. Պ. ԱՊՐԵՍՅԱՆ և Հ. Ռ. ՀԱԴԻՄՈՍՅԱՆ

Ընտրվում են պայմաններ մասնակիորեն սիլիկազերծված կալիումական և առավելապես կալիումական ալյումինատային լուծույթների ոչ լրիվ կարբոնացման համար, որոնք վերահսկում են Al(OH)₃-ի խոշոր բյուրեղների առաջացումը համակարգի մակերևույթային էներգիան իջեցնող նյութերի ավելացման դեպքում։ Արդյունքում ստացվում է կորունդային խեցեղենի համար անհրաժեշտ մանրության ալյումինի հիդրօքսիդ։

Բարձրակալիումական ալյումոսիլիկատային հումքի վերամշակման տեխնոլոգիայի պարզեցումը ի հաշիվ սիլիկազերծման գործողության մասնակի բացառման և կարբոնացման գործընթացքի ընտրված պայմաններում կիրառման՝ հնարավորություն է տալիս պարզեցնել և էժանացնել սակավահիմնային սակավասիլիկահողային գերմանր կորունդի արտադրությունը։

OBTAINING HIGH-DISPERSED ALUMINUM HYDROXIDE TO PRODUCTION CORUNDUM CERAMICS AT THE TIME OF CARBONIZATION PARTIALY DISILICONIZATED ALUMINUM SOLUTIONS

A. A. KHANAMIROVA, L. P. APRESYAN and A. R. ADIMOSYAN

There have been sorted out conditions, which control the formation of large Al(OH)₃ crystals in the time of conducting imperfect carbonization of partialy disiliconizated potassium and mainly potassium aluminate solutions with additions of substances that reduce free surface energy of the system. As a result it's being obtained aluminum hydroxide with necessary for corundum ceramics production dispersion.

The production of low-alkaline and low-silicon high-dispersed corund can be made easier and cheaper by means of simplifying the technology of processing high-potassium aluminosilicate stuff, owing to partial exclusion of disiliconization operation and conducting the carbonization process in selected conditions.

ЛИТЕРАТУРА

- [1] Кайнарский И.С., Дегтярева Э.В., Орлова И.Г. Корундовые огнеупоры и керамика. М., Металлургия, 1981, с. 167.
- [2] Ханамирова А.А. Глинозем и пути уменьшения содержания в нем примесей. Ереван, Изд.АН АрмССР, 1983, с. 243.
- [3] *Манвелян М.Г., Ханамирова А.А.* Обескремнивание щелочных алюминатных растворов. Ереван, Изд.АН АрмССР, 1973, с. 300.
- [4] Лилеев И.С. // Труды ГИПХ, Л., ОНТИ-Химтеорет. 1936, №2, с. 103.
- [5] Мазель В.А. Производство глинозема. М., Металлургиздат, 1955, с. 430.
- [6] Лайнер А.И. Производство глинозема. М., Металлургиздат, 1961, с. 619.
- [7] Лайнер А.И., Еремин Н.И., Лайнер Ю.А., Певзнер И.З. Производство глинозема. М., Металлургия, 1978, с. 344.
- [8] Строков Ф.Н. // Труды ВАМИ, 1940, №20, с. 61.
- [9] Арандаренко Г.Т., Лайнер А.И. // Изв. вузов (цветн. металл.), 1959, №2, с.80.
- [10] Кацобашвили Я.Р., Куркова Н.С. // ЖПХ, 1968, т. 41, №9, с. 1905.
- [11] Мальцев Г.З. // ЖПХ, 1977, т. 50, №9, с. 1938.
- [12] Ханамирова А.А., Никогосян Б.В. // Цветные металлы, 1976, №8, с. 44.
- [13] Ханамирова А.А., Никогосян Б.В. // Арм. хим. ж., 1977, т. 30, №11, с. 954.
- [14] *Ханамирова А.А., Апресян Л.П., Адимосян А.Р.* // Хим. ж. Армении, 2002, т. 55, №1-2. с. 53.
- [15] *Кузнецов С.И., Деревянкин В.А.* Физическая химия процесса производства глинозема по способу Байера. М., Металлургиздат, 1964, с. 282.
- [16] Kotera V. // Interceram., 1977, Bd. 28, №1, s. 14.
- [17] Tamman G. // Z. anorg. Chem., 1925, Bd. 149, H. 1, c. 61.
- [18] Липин В.А. // Цветные металлы, 1998, №7, с. 40.
- [19] Мейсон Б. Основы геохимии. М., Недра, 1971, с. 322.
- [20] Ребиндер П.А. // Хим. наука и промышленность, 1959, т. 4, №5, с. 554.
- [21] Абрамзон А.А. Поверхностно-активные вещества. Л., Химия, 1981, с. 304.
- [22] Волохов Ю.А., Волкова Р.С., Тесля В.Г. Совершенствование и интенсификация процессов глиноземного производства. Л., ВАМИ, 1982, с. 40.
- [23] Рогинский С.З. // ЖФХ, 1941, т. 15, №1, с. 1.
- [24] Матусевич Л.Н. Кристаллизация из растворов. М., Химия, 1968, с. 304.
- [25] Френкель Я.И. Кинетическая теория жидкостей. М., Изд. АН СССР, 1975, с. 592.
- [26] Шварцман Б.Х., Аракелян О.И. // Цветные металлы, 1964, №4, с. 35.
- [27] *Zivkovič Z.D.* // Metallurgija, 1979, v. 18, №3, p. 7.
- [28] *Ханамирова А.А., Адимосян А.Р., Апресян Л.П.* // Хим. ж. Армении, 1998, т. 51, №2, с. 11.
- [29] *Ханамирова А.А., Никогосян Б.В., Апресян Л.П., Симонян Б.Н.* // Комплексное использование минерального сырья, 1985, №2, с. 56.
- [30] Торопов Н.А., Сычев М.М. // Труды ЛТИ, 1955, №34, с. 23.